%0 Journal Article %T Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes %A Chan Yoke-Fun %A Sazaly AbuBakar %J BMC Microbiology %D 2006 %I BioMed Central %R 10.1186/1471-2180-6-74 %X Six EV-71 isolates from an outbreak in Malaysia, in 1997, were sequenced completely. These isolates were identified as EV-71 subgenotypes, B3, B4 and C2. A phylogenetic tree that correlated well with the present enterovirus classification scheme was established using these full genome sequences and all other available full genome sequences of EV-71 and human enterovirus A (HEV-A). Using the 5' UTR, P2 and P3 genomic regions, however, isolates of EV-71 subgenotypes B3 and C4 segregated away from other EV-71 subgenotypes into a cluster together with coxsackievirus A16 (CV-A16/G10) and EV-71 subgenotype C2 clustered with CV-A8. Results from the similarity plot analyses supported the clustering of these isolates with other HEV-A. In contrast, at the same genomic regions, a CV-A16 isolate, Tainan5079, clustered with EV-71. This suggests that amongst EV-71 and CV-A16, only the structural genes were conserved. The 3' end of the virus genome varied and consisted of sequences highly similar to various HEV-A viruses. Numerous recombination crossover breakpoints were identified within the non-structural genes of some of these newer EV-71 subgenotypes.Phylogenetic evidence obtained from analyses of the full genome sequence supports the possible occurrence of inter-typic recombination involving EV-71 and various HEV-A, including CV-A16, the most common causal agent of HFMD. It is suggested that these recombination events played important roles in the emergence of the various EV-71 subgenotypes.More than sixty different types of human enteroviruses have been identified [1]. Species human enterovirus A (HEV-A) which include 11 members of the coxsackievirus A (CV-A) group; CV-A2, CV-A3, CV-A4, CV-A5, CV-A6, CV-A7, CV-A8, CV-A10, CV-12, CV-14, CV-A16 and human enterovirus 71 (EV-71) are associated with several human diseases [1,2]. CV-A2, CV-A6, CV-A8 and CV-A10 are known to cause herpangina [2]; CV-A2, CV-A4, CV-A7 and CV-A10 cause aseptic meningitis [2] and CV-A5, CV-A10, CV-A16 a %U http://www.biomedcentral.com/1471-2180/6/74