%0 Journal Article %T Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities %A Marlis Reich %A Annegret Kohler %A Francis Martin %A Marc Bu¨Ĥe %J BMC Microbiology %D 2009 %I BioMed Central %R 10.1186/1471-2180-9-241 %X We have constructed a custom ribosomal DNA phylochip to identify ECM fungi. Specific oligonucleotide probes were targeted to the nuclear internal transcribed spacer (ITS) regions from 95 fungal species belonging to 21 ECM fungal genera. The phylochip was first validated using PCR amplicons of reference species. Ninety-nine percent of the tested oligonucleotides generated positive hybridisation signals with their corresponding amplicons. Cross-hybridisation was mainly restricted at the genus level, particularly for Cortinarius and Lactarius species. The phylochip was subsequently tested with environmental samples that were composed of ECM fungal DNA from spruce and beech plantation fungal communities. The results were in concordance with the ITS sequencing of morphotypes and the ITS clone library sequencing results that were obtained using the same PCR products.For the first time, we developed a custom phylochip that is specific for several ectomycorrhizal fungi. To overcome cross-hybridisation problems, specific filter and evaluation strategies that used spot signal intensity were applied. Evaluation of the phylochip by hybridising environmental samples confirmed the possible application of this technology for detecting and monitoring ectomycorrhizal fungi at specific sites in a routine and reproducible manner.Ectomycorrhizal (ECM) fungi form a mutualistic symbiosis with tree roots and play key roles in forest ecosystems. In return for receiving nutrients and water from the soil via the roots, they receive carbohydrates as photosynthate from their host plants [1]. As is the case for other soil fungal species, the composition of the ECM community is affected by both biotic and abiotic factors; these include climate changes, seasons, soil micro-site heterogeneity, soil and litter quality, host tree species and forest management [2-6]. To describe in more detail the impact of environmental factors on community composition, long-term, year-round monitoring and a detaile %U http://www.biomedcentral.com/1471-2180/9/241