%0 Journal Article %T Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups %A Chi-Yu Zhang %A Ji-Fu Wei %A Shao-Heng He %J BMC Microbiology %D 2006 %I BioMed Central %R 10.1186/1471-2180-6-88 %X By investigating the adaptive evolution of S protein, we identified twelve amino acid sites (75, 239, 244, 311, 479, 609, 613, 743, 765, 778, 1148, and 1163) in the S protein under positive selective pressure. Based on phylogenetic tree and epidemiological investigation, SARS outbreak was divided into three epidemic groups: 02每04 interspecies, 03-early-mid, and 03-late epidemic groups in the present study. Positive selection was detected in the first two groups, which represent the course of SARS-CoV interspecies transmission and of viral adaptation to human host, respectively. In contrast, purifying selection was detected in 03-late group. These indicate that S protein experiences variable positive selective pressures before reaching stabilization. A total of 25 sites in 02每04 interspecies epidemic group and 16 sites in 03-early-mid epidemic group were identified under positive selection. The identified sites were different between these two groups except for site 239, which suggests that positively selected sites are changeable between groups. Moreover, it was showed that a larger proportion (24%) of positively selected sites was located in receptor-binding domain (RBD) than in heptad repeat (HR)1-HR2 region in 02每04 interspecies epidemic group (p = 0.0208), and a greater percentage (25%) of these sites occurred in HR1每HR2 region than in RBD in 03-early-mid epidemic group (p = 0.0721). These suggest that functionally different domains of S protein may not experience same positive selection in each epidemic group. In addition, three specific replacements (F360S, T487S and L665S) were only found between 03-human SARS-CoVs and strains from 02每04 interspecies epidemic group, which reveals that selective sweep may also force the evolution of S genes before the jump of SARS-CoVs into human hosts. Since certain residues at these positively selected sites are associated with receptor recognition and/or membrane fusion, they are likely to be the crucial residues for animal %U http://www.biomedcentral.com/1471-2180/6/88