%0 Journal Article %T Cardiovascular risk assessment - From individual risk prediction to estimation of global risk and change in risk in the population %A John A Batsis %A Francisco Lopez-Jimenez %J BMC Medicine %D 2010 %I BioMed Central %R 10.1186/1741-7015-8-29 %X Using cardiovascular risk formulae at a population level to estimate and compare average cardiovascular risk among groups has been recently proposed as a way to facilitate surveillance of net cardiovascular risk and target public health interventions. Risk prediction formulas may help to compare interventions that cause effects of different magnitudes and directions in several cardiovascular risk factors, because these formulas assess the net change in risk using easily obtainable clinical variables. Because of conflicting data estimates of the incidence and prevalence of cardiovascular disease, risk prediction formulae may be a useful tool to estimate such risk at a population level.Although risk prediction formulae were intended on guiding clinicians to individualized therapy, they also can be used to ascertain trends at a population-level, particularly in situations where changes in different cardiovascular risk factors over time have different magnitudes and directions. The efficacy of interventions that are proposed to reduce cardiovascular risk impacting more than one risk factor can be well assessed by these means.As cardiovascular (CV) disease corresponds to the most common cause of death in the United States with estimates exceeding one million deaths annually [1], estimates of individual and population-based CV risk are of paramount importance. CV risk prediction formulae and tables are decision tools that allow the identification of patients at high risk of CV disease. These tools allow early interventions by providers to recommend lifestyle modification or drugs to control modifiable CV risk factors, including hypertension, diabetes, smoking, dyslipidemia and obesity.Several CV risk prediction formulae are used in clinical practice worldwide. In the United States, the modified Framingham Risk Score (FRS) is the most commonly used tool [2], and has been adapted for use in diverse populations in other parts of the world. Other tools include the Prospective %U http://www.biomedcentral.com/1741-7015/8/29