%0 Journal Article %T Models predicting the growth response to growth hormone treatment in short children independent of GH status, birth size and gestational age %A Jovanna Dahlgren %A Berit Kristr£żm %A Aimon Niklasson %A Andreas FM Nierop %A Sten Rosberg %A Kerstin Albertsson-Wikland %J BMC Medical Informatics and Decision Making %D 2007 %I BioMed Central %R 10.1186/1472-6947-7-40 %X Growth data from 415 short prepubertal children were used to construct models for predicting the growth response during the first years of GH therapy. The performance of the models was validated with data from a separate cohort of 112 children using the same inclusion criteria.Using only auxological data, the model had a standard error of the residuals (SDres), of 0.23 SDS. The model was improved when endocrine data (GHmax profile, IGF-I and leptin) collected before starting GH treatment were included. Inclusion of these data resulted in a decrease of the SDres to 0.15 SDS (corresponding to 1.1 cm in a 3-year-old child and 1.6 cm in a 7-year old). Validation of these models with a separate cohort, showed similar SDres for both types of models. Preterm children were not included in the Model group, but predictions for this group were within the expected range.These prediction models can with high accuracy be used to identify short children who will benefit from GH treatment. They are clinically useful as they are constructed using data from short children with a broad range of GH secretory status, birth size and gestational age.Prediction models are used to determine the outcome of therapies in individual patients. Validated models for predicting individual growth responses to growth hormone (GH) treatment have been constructed for short children born appropriate for gestational age (AGA) who have a broad range of GH secretory status [1], for children with GH deficiency (GHD) [2,3], for children born small-for-gestational age (SGA) without severe GHD [4], and for girls with Turner syndrome [5]. Most models have been developed in children grouped according to birth size [4] or GH secretory status [2,3]. However, as size at birth is a continuum, and any statistically cut-off point chosen will be artificial, the development of prediction models for growth in children should be independent of birth size, especially as a broad range of the variables used improves the mode %U http://www.biomedcentral.com/1472-6947/7/40