%0 Journal Article %T A geometric proof of the Lelong-Poincar¨¦ formula %A M El Amrani %A A Jeddi %J Proyecciones (Antofagasta) %D 2013 %I Universidad Cat¨®lica del Norte %X We propose a geometric proof of the fundamental Lelong-Poincar¨¦ formula : dd c log |/ | = [/ = 0] where f is any nonzero holomorphic function defined on a complex analytic manifold V and [/ = 0] is the integration current on the divisor of the zeroes of /. Our approach is based, via the local parametrization theorem, on a precise study of the local geometry of the hypersurface given by /. Our proof extends naturally to the meromorphic case. %K Complex analytic manifolds %K analytic sets %K local parametrization theorem %K integration currents %K branching coverings %U http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172013000100001