%0 Journal Article %T Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts %A Phillip J Whiley %A Christopher A Pettigrew %A Brooke L Brewster %A Logan C Walker %A kConFab Investigators %A Amanda B Spurdle %A Melissa A Brown %J BMC Medical Genetics %D 2010 %I BioMed Central %R 10.1186/1471-2350-11-80 %X This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches.Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr) by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly), BRCA2 c.8972G > A (p.Arg2991His), BRCA2 c.9172A > G (p.Ser3058Gly), and BRCA2 c.9213G > T (p.Glu3071Asp) by a minigene assay, revealed no evidence for aberrant splicing.These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.DNA sequence variants of unknown clinical significance are regularly identified when individuals with a family history of breast cancer are screened for mutations in the BRCA1 and BRCA2 genes. Determining the clinical relevance of these unclassified variants, particularly rare exonic unclassified variants, is challenging. Currently, functional assays designed to assess the pathogenicity of exonic unclassified variants usually aim to determine the effect on protein function, and do not take into account the potential effect the UV may have on RNA function. Defects in RNA function, including defects in RNA splicing, stability and translation, are likely to underly the pathogenicity of a significant proportion of unclassified variants (reviewed in [1]). For example, sequence variants in exonic splice enhancers (ESEs) that result in either abnormal splicing or induce the skipping and therefore rescue of deleterious non-sense mutations, have previously been reported in multiple disease-associated genes, including BRCA1 and BRCA2 [2-6],Whilst predicting the consequences of unclassified variants in the consensus donor and acceptor dinucleotide sites flanking exons can be done with reasonable confidence, forecasting the effect of exonic unclassified variants mapping to ESEs is much more difficult. This is in part due to fact that ESEs %U http://www.biomedcentral.com/1471-2350/11/80