%0 Journal Article %T L¨¦vy constants of quadratic irrationalities %A Christoph Baxa %J Uniform Distribution Theory %D 2008 %I Mathematical Institute of the Slovak Academy of Sciences %X An irrational number $\alpha$ is said to have L¨¦vy constant $\beta(\alpha)$ if the limit $$\lim_{m \to \infty} \frac 1 m \log q_m(\alpha) =: \beta(\alpha)$$ exists where $q_m(\alpha)$ denotes the denominator of the $m$th convergent of $\alpha$. We give a new proof of the fact that the L¨¦vy constants of quadratic irrationalities are dense in the interval [\log \frac{1+ \sqrt5}2, + \infty)$. %K Continued fraction %K convergent %K quadratic irrational %U http://www.boku.ac.at/MATH/udt/vol03/no2/Baxa08-2.pdf