%0 Journal Article %T On the distribution modulo one of the mean values of some arithmetical functions %A Jean-Marc Deshouillers %A Henryk Iwaniec %J Uniform Distribution Theory %D 2008 %I Mathematical Institute of the Slovak Academy of Sciences %X Florian Luca asked whether the sequence consisting of the arithmetic(extit {resp.} geometric) mean values of the Euler $ \varphi$ functionis uniformly distributed modulo $1$. We show that it is the case for the arithmetic means, and that it is the case for the geometric means if and only if the number $e^{-1} \prod_p (1-1/p)^{1/p}$ is irrational. More general arithmetic functions are also considered. %K Euler function %K distribution modulo $1$ %K multiplicative functions %U http://www.boku.ac.at/MATH/udt/vol03/no1/DesIwa08-1.pdf