%0 Journal Article %T Expression Profiling of a Heterogeneous Population of ncRNAs Employing a Mixed DNA/LNA Microarray %A Konstantinia Skreka %A Marek Zywicki %A Michael Karbiener %A Alexander H¨ıttenhofer %A Marcel Scheideler %A Mathieu Rederstorff %J Journal of Nucleic Acids %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/283560 %X Mammalian transcriptomes mainly consist of non protein coding RNAs. These ncRNAs play various roles in all cells and are involved in multiple regulation pathways. More recently, ncRNAs have also been described as valuable diagnostic tools. While RNA-seq approaches progressively replace microarray-based technologies for high-throughput expression profiling, they are still not routinely used in diagnostic. Microarrays, on the other hand, are more widely used for diagnostic profiling, especially for very small ncRNA (e.g., miRNAs), employing locked nucleic acid (LNA) arrays. However, LNA microarrays are quite expensive for high-throughput studies targeting longer ncRNAs, while DNA arrays do not provide satisfying results for the analysis of small RNAs. Here, we describe a mixed DNA/LNA microarray platform, where directly labeled small and longer ncRNAs are hybridized on LNA probes or custom DNA probes, respectively, enabling sensitive and specific analysis of a complex RNA population on a unique array in one single experiment. The DNA/LNA system, requiring relatively low amounts of total RNA, which complies with diagnostic references, was successfully applied to the analysis of differential ncRNA expression in mouse embryonic stem cells and adult brain cells. 1. Introduction The high-resolution analysis of 1% of the human genome by the ENCODE project has shown that up to 90% of the genome is being transcribed while only about 1.5% of these transcripts correspond to protein coding exons [1]. Therefore, it was suggested that the majority of the transcripts might serve as a source for regulatory non coding RNAs (ncRNAs) [2, 3], with the predicted number of ncRNAs present in the human genome reaching up to 0.5 million transcripts [4]. However, most of these transcripts still remain of unknown function, and their functionality is even debated [4]. These novel exciting aspects of the cellular transcriptome content thus require novel methods for profiling ncRNAs expression in a high-throughput manner. Lately, the most widely used expression profiling technique has become high-throughput sequencing or RNA-seq [5, 6], with numerous advantages. RNA-seq provides full genome coverage and allows detection of single nucleotide polymorphisms as well as RNA editing events, independently of hybridization artifacts. However, RNA-seq drawbacks and artifacts are not completely absent, generally linked to reverse transcription or library generation protocols [6, 7]. In addition, analysis of sequencing datasets is still rather time consuming and requires a strong bioinformatic %U http://www.hindawi.com/journals/jna/2012/283560/