%0 Journal Article %T UvrD Participation in Nucleotide Excision Repair Is Required for the Recovery of DNA Synthesis following UV-Induced Damage in Escherichia coli %A Kelley N. Newton %A Charmain T. Courcelle %A Justin Courcelle %J Journal of Nucleic Acids %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/271453 %X UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structures in vitro and is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forks in vivo has not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate in uvrD mutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regression in vivo and suggest that the failure of uvrD mutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair. 1. Introduction The accurate duplication of the genome is critical to the survival of any organism. DNA damage, such as that caused by UV irradiation, can disrupt the replication machinery and prevent it from completing its task [1, 2]. In Escherichia coli, a number of the cellular events associated with the recovery of replication forks arrested by UV-induced lesions are known to involve several gene products in the RecF pathway [3¨C5]. Following replication arrest, the nascent lagging stand of DNA is partially degraded through the coordinated activity of the RecJ nuclease and RecQ helicase [4]. The extent of degradation is limited by RecF-O-R, which facilitates loading and formation of a RecA filament at the stalled fork. Both biochemical and cellular studies suggest that RecF, -O, and -R, together with RecA, facilitate strand exchange or regression at the branch point of the arrested fork [6, 7]. Cellular studies suggest that this processing restores the lesion-containing region to a double-stranded form, allowing nucleotide excision repair to access and repair the lesion [6, 8]. In the absence of either processing or repair, the recovery is delayed and elevated levels %U http://www.hindawi.com/journals/jna/2012/271453/