%0 Journal Article %T Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii %A Toma£¿ Vaupoti£¿ %A Ana Plemenita£¿ %J BMC Genomics %D 2007 %I BioMed Central %R 10.1186/1471-2164-8-280 %X A cDNA subtraction library was constructed for H. werneckii, adapted to moderate salinity or an extremely hypersaline environment of 4.5 M NaCl. An uncommon osmoresponsive set of 95 differentially expressed genes was identified. The majority of these had not previously been connected with the adaptation of salt-sensitive S. cerevisiae to hypersaline conditions. The transcriptional response in hypersaline-adapted and hypersaline-stressed cells showed that only a subset of the identified genes responded to acute salt-stress, whereas all were differentially expressed in adapted cells. Interaction with HwHog1 was shown for 36 of the 95 differentially expressed genes. The majority of the identified osmoresponsive and HwHog1-dependent genes in H. werneckii have not been previously reported as Hog1-dependent genes in the salt-sensitive S. cerevisiae. The study further demonstrated the co-occupancy of HwHog1 and RNA polymerase II on the chromatin of 17 up-regulated and 2 down-regulated genes in 4.5 M NaCl-adapted H. werneckii cells.Extremely halotolerant H. werneckii represents a suitable and highly relevant organism to study cellular responses to environmental salinity. In comparison with the salt-sensitive S. cerevisiae, this yeast shows a different set of genes being expressed at high salt concentrations and interacting with HwHog1 MAP kinase, suggesting atypical processes deserving of further study.When a living organism is subjected to extreme environmental conditions for an extended period of time, an adaptive response may become crucial for its continued existence. The response of eukaryotic cells such as yeast to environmental stress involves complex changes in gene expression which subsequently lead to various metabolic responses to induce adaptation to the new conditions. Fluctuating external osmolarity, like changes in salt concentration, leads to altered transcription of many responsive genes in an effort to counteract the stress with the activity of their prote %U http://www.biomedcentral.com/1471-2164/8/280