%0 Journal Article %T Question Classification using Multiple Kernel Learning and Semantic Information %A Guohua Chen %A Yong Tang %A Yan Pan %A Qiang Deng %J Journal of Computers %D 2011 %I Academy Publisher %R 10.4304/jcp.6.11.2325-2334 %X Question Classification is an important stage in Question Answering, and it has been a hot topic in the field of Information Retrieval in recent years. In this paper we explore the role of semantic features and propose two separate tree kernel functions incorporating the semantic features into the Support Vector Machine model. Then Multiple Kernel Learning approach is proposed to combine the two kernels and gather their advantages together. Experimental results show that using the method proposed in this paper is very effective and the accuracy reaches 95.8% which significantly outperforms the state-of-the-art approaches. %K Multiple Kernel Learning %K Question Classification %K Semantic Features %K Support Vector Machine %K Tree Kernel %U http://ojs.academypublisher.com/index.php/jcp/article/view/4172