%0 Journal Article %T Metabolic classification of microbial genomes using functional probes %A Chi-Ching Lee %A Wei-Cheng Lo %A Szu-Ming Lai %A Yi-Ping Chen %A Chuan Tang %A Ping-Chiang Lyu %J BMC Genomics %D 2012 %I BioMed Central %R 10.1186/1471-2164-13-157 %X We have developed a proteome-based method for classifying microbial species. This classification method uses a set of probes comprising short, highly conserved amino acid sequences. For each genome, in silico translation is performed to obtained its proteome, based on which a probe-set frequency pattern is generated. Then, the probe-set frequency patterns are used to cluster the proteomes/genomes.Features of the proposed method include a high running speed in challenge of a large number of genomes, and high applicability for classifying organisms with incomplete genome sequences. Moreover, the probe-set clustering method is sensitive to the metabolic phenotypic similarities/differences among species and is thus supposed potential for the classification or differentiation of closely-related organisms.Owing to new sequencing technologies, the number of microorganisms with completely or partially determined genomic sequences is rapidly increasing, inclusive of many species that cannot be artificially cultured and many new/unknown species collected from environmental samples. As the amount of genomic information increases, interdependent relationships between species (e.g., the symbiotic partnership between bacteria and host) and the survival strategy of certain microbes and their living environment (e.g., Archaea and Bacteria living in the hot spring) become particularly interesting. As a result, the microbiology field has gradually expanded its focus from microbial clones to microbial communities, and some new research fields have accordingly formed, such as metagenomics [1]. Because species are no longer studied through clonal isolates, the first question encountered by microbial genomics researchers looking at a heterogeneous population is often "Who is there?". A number of short biomarkers, such as the 16S rRNA genes, exhibit detectable sequence variations in a basically conserved framework between species and can be used both to identify individual species within %U http://www.biomedcentral.com/1471-2164/13/157