%0 Journal Article %T On H1-compositors and piecewise continuous mappings (in Ukrainian) %A O. O. Karlova %A O. V. Sobchuk %J Matematychni Studii %D 2012 %I Lviv Mathematical Society, VNTL Publishers %X We introduce the notion of a right $H_1$-compositor and provethat for a hereditarily Baire metrizable space $X$, a normalspace $Y$ and a mapping $fcolon Xo Y$ the followingconditions are equivalent: (i) $f$ is piecewise continuous;(ii) $f$ is $k$-continuous; (iii) $f$ is $G_delta$-measurable;if, moreover, $Y$ is perfect, then (i)--(iii) are equivalentto: (iv) $f$ is a right $H_1$-compositor. %K right H 1 -compositor %K right B 1 -compositor %K mapping of the first Lebesgue class %K G ¦Ä -measurable mapping %K piecewise continuous mapping %K k -continuous mapping %K weakly k -continuous mapping %U http://matstud.org.ua/texts/2012/38_2/139-146.pdf