%0 Journal Article %T Identification and preliminary characterization of mouse Adam33 %A Teresa M Gunn %A Arezou Azarani %A Philip H Kim %A Richard W Hyman %A Ronald W Davis %A Gregory S Barsh %J BMC Genetics %D 2002 %I BioMed Central %R 10.1186/1471-2156-3-2 %X In a 48 kb region of mouse DNA adjacent to the Attractin gene on mouse chromosome 2, we identified sequences very similar to human ADAM33. A full-length mouse cDNA was identified by a combination of gene prediction programs and RT-PCR, and the probable full-length human cDNA was identified by comparison to human genomic sequence in the homologous region on chromosome 20p13. Mouse ADAM33 is 44% identical to Xenopus laevis ADAM13, however a phylogenetic alignment and consideration of functional domains suggests that the two genes are not orthologous. Mouse Adam33 is widely expressed, most highly in the adult brain, heart, kidney, lung and testis.While mouse ADAM33 is similar to Xenopus ADAM13 in sequence, further examination of its embryonic expression pattern, catalytic activity and protein interactions will be required to assess the functional relationship between these two proteins. Adam33 is expressed in the mouse adult brain and could play a role in complex processes that require cell-cell communication.The metalloprotease-disintegrin family of proteins (called ADAMs, or MDC proteins) consists of over 30 members identified in various species. These proteins are membrane-anchored glycoproteins, named for two of the motifs they carry: adisintegrin domain, and ametalloprotease domain [1]. ADAM proteins also contain a single transmembrane domain, a C-rich region and an EGF-like repeat. These domains suggest roles in adhesive interactions, cell fusion, proteolysis and/or intracellular signaling and implicate this family of proteins in numerous biological processes including fertilization, neurogenesis, myoblast fusion, and protein-ectodomain shedding of cytokines and other cell surface proteins [2-5]. While some ADAM proteins, such as Kuzbanian (ADAM 10) and TACE (ADAM 17), have active metalloprotease domains and are thought to be required for proteolytic processing of other proteins [3,6,7], other ADAM proteins, including fertilin ¦Â, do not have active metalloproteas %U http://www.biomedcentral.com/1471-2156/3/2