%0 Journal Article %T A wild derived quantitative trait locus on mouse chromosome 2 prevents obesity %A Md Bazlur R Mollah %A Akira Ishikawa %J BMC Genetics %D 2010 %I BioMed Central %R 10.1186/1471-2156-11-84 %X The obesity QTL was physically mapped to an 8.8-Mb region of mouse chromosome 2. The wild-derived allele significantly decreased white fat pad weight, body weight and serum levels of glucose and triglyceride. It was also resistant to the high-fat diet. Among 29 genes residing within the 8.8-Mb region, Gpd2, Upp2, Acvr1c, March7 and Rbms1 showed great differential expression in livers and/or gonadal fat pads between B6.Cg-Pbwg1 and B6 mice.The wild-derived QTL allele prevented obesity in both mice fed a low-fat standard diet and mice fed a high-fat diet. This finding will pave the way for identification of causative genes for obesity. A further understanding of this unique QTL effect at genetic and molecular levels may lead to the discovery of new biological and pathologic pathways associated with obesity.Obesity is a multifactorial disease and is influenced by genetic and environmental components and their interactions. It is an important predisposing factor of serious chronic diseases including type 2 diabetes, hypertension, cardiovascular disease, and some forms of cancer [1]. Despite the identification of several Mendelian genes related to obesity, our understanding of the genetic architecture of the common form of obesity is poor. In recent years, quantitative trait locus (QTL) analysis has become a standard procedure for localizing loci affecting such multifactorial disease traits on chromosomal regions. QTL mapping has revealed many loci related to body weight, growth, obesity and diabetes as reviewed elsewhere [2], and the number of identified loci is increasing day by day. However, identification of causative genes contributing to variation in traits has proven extremely difficult for three main reasons. First, the confidence intervals of identified QTLs remain wide, usually spanning 10-50 cM and possibly harboring hundreds or thousands of genes [3,4]. Second, each locus often explains only a fraction of the phenotypic variation [5]. Third, a single QTL is l %U http://www.biomedcentral.com/1471-2156/11/84