%0 Journal Article %T Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: a case study for Juniperus communis in northwestern Europe %A An Vanden-Broeck %A Robert Gruwez %A Karen Cox %A Sandy Adriaenssens %A Inga M Michalczyk %A Kris Verheyen %J BMC Genetics %D 2011 %I BioMed Central %R 10.1186/1471-2156-12-73 %X Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability.In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.Habitat fragmentation and destruction eventually lead to a reduction in the genetic diversity of plant populations. The consequences of habitat fragmentation are related to the differential ability of plant species to spread their genes across the landscape [1]. Dioecious plant species, with separate male and female plants, appear to have a higher extinction probability compared to cosexual (hermaphroditic and monoecious) plant species (e.g. [2-4]). Separation of the sexes halves the densities of both potential mates and offspring-producing individuals. Furthermore, a dioecious species contributes propagules to fewer sites than a hermaphroditic species with equivalent adult density because the separation of the sexes reduces the density of offspring-producing individuals (i.e. the seed-shadow handicap, reviewed by [3]). This elevated density increases local resource competition thereby reduc %U http://www.biomedcentral.com/1471-2156/12/73