%0 Journal Article %T Evolutionary history of the genus Tarentola (Gekkota: Phyllodactylidae) from the Mediterranean Basin, estimated using multilocus sequence data %A Catarina Rato %A Salvador Carranza %A David J Harris %J BMC Evolutionary Biology %D 2012 %I BioMed Central %R 10.1186/1471-2148-12-14 %X Of all three generated genealogies (combined mtDNA, combined nDNA, and mtDNA+nDNA) we prefer the phylogenetic relationships obtained when all genetic markers are combined. A total of 133 individuals, and 2,901 bp of sequence length, were used in this analysis. The phylogeny obtained for Tarentola presents deep branches, with T. annularis, T. ephippiata and T. chazaliae occupying a basal position and splitting from the remaining species around 15.38 Mya. Tarentola boehmei is sister to all other Mediterranean species, from which it split around 11.38 Mya. There are also two other major groups: 1) the T. mauritanica complex present in North Africa and Europe; and 2) the clade formed by the T. fascicularis/deserti complex, T. neglecta and T. mindiae, occurring only in North Africa. The cladogenesis between these two groups occurred around 8.69 Mya, coincident with the late Miocene. Contrary to what was initially proposed, T. neglecta and T. mindiae are sister taxa to both T. fascicularis and T. deserti.At least in the Iberian Peninsula and Northwest Africa, the lineages obtained have some geographic coherency, whilst the evolutionary history of the forms from Northeast Africa remains unclear, with a paraphyletic T. fascicularis with respect to T. deserti. The separation between the T. mauritanica complex and the clade formed by the T. fascicularis/deserti complex, T. neglecta and T. mindiae is coincident with the uplift of the Atlas Mountain chain, and the establishment of two distinct bioclimatic regions on each side of the barrier.The Mediterranean Basin has been the stage of various paleogeographical events that have helped shape the genetic diversity and phylogeographic patterns of numerous taxa. In particular, the connection between the Mediterranean Sea and the Atlantic Ocean closed about 5.96 million years ago (Mya) causing the Mediterranean Sea to desiccate during the Messinian Salinity Crisis, an event that ended 5.33 Mya, with the formation of the Strait of Gi %U http://www.biomedcentral.com/1471-2148/12/14