%0 Journal Article %T Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation %A Matthew B Toomey %A Kevin J McGraw %J BMC Evolutionary Biology %D 2012 %I BioMed Central %R 10.1186/1471-2148-12-3 %X Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited.Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behaviour shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.Female mate preferences have led to the emergence of extremely elaborate and diverse male ornamentation in many animals (reviewed in [1]). A robust framework exists for understanding how traits and preferences coevolve at the population genetic level [2-5]. These models predict that sexual selection and the assortative mating of attractive males and choosy females inevitably leads to a positive genetic covariance between male trait and female preference. Yet, the physiological pathways that translate such genetic information to mating behaviors are largely unknown. These physiological mechanisms have the potential to profoundly shape the rate and direction of coevolution if they have mutually pleiotropic effects on the expression of a trait and the preference for that trait.Sexually selected carotenoid-based male coloration appears in a diversity of taxa, from crabs (Callinectes sapidus; [6]) and fish (Poecilia reticulata; [7]) to birds (Carpodacus mexicanus; [8]), and has become a model system for understanding the %U http://www.biomedcentral.com/1471-2148/12/3