%0 Journal Article %T Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function %A Ao-lei Niu %A Yin-qiu Wang %A Hui Zhang %A Cheng-hong Liao %A Jin-kai Wang %A Rui Zhang %A Jun Che %A Bing Su %J BMC Evolutionary Biology %D 2011 %I BioMed Central %R 10.1186/1471-2148-11-298 %X We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species.RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by Darwinian positive selection acting on the male reproductive system and possibly also on the central nervous system, which sheds light on understanding the role of homeobox genes in adaptive evolution.Homeobox genes encode homeobox proteins that play a crucial role in various developmental processes as transcription factors. A key feature of homeobox proteins is the homeodomain, a 60-amino-acid helix-turn-helix DNA-binding domain [1]. Due to their functional importance during development, most of the homeobox genes (espe %U http://www.biomedcentral.com/1471-2148/11/298