%0 Journal Article %T Modulation of intracellular calcium and proliferative activity of invertebrate and vertebrate cells by ethylene %A Sanja Perovic %A J¨¹rgen Seack %A Vera Gamulin %A Werner EG M¨¹ller %A Heinz C Schr£¿der %J BMC Cell Biology %D 2001 %I BioMed Central %R 10.1186/1471-2121-2-7 %X Here we describe for the first time, that besides sponge cells, mammalian cell lines (mouse NIH-3T3 and human HeLa and SaOS-2 cells) respond to ethylene, generated by ethephon, with an immediate and strong, transient increase in [Ca2+]i level, as demonstrated using Fura-2 imaging method. A rise of [Ca2+]i level was also found following exposure to ethylene gas of cells kept under pressure (SaOS-2 cells). The upregulation of [Ca2+]i was associated with an increase in the level of the cell cycle-associated Ki-67 antigen. In addition, we show that the effect of ethephon addition to S. domuncula cells depends on the presence of calcium in the extracellular milieu.The results presented in this paper indicate that ethylene, previously known to act as a mediator (hormone) in plants only, deserves also attention as a potential signaling molecule in higher vertebrates. Further studies are necessary to clarify the specificity and physiological significance of the effects induced by ethylene in mammalian cells.Ethylene is the chemically simplest plant hormone. This compound plays an important regulatory role in plant growth, development, and senescence; it is involved in a variety of stress responses in plants (for a review, see [1]). In the last years, much progress has been made in the isolation and characterisation of the genes and proteins participating in the ethylene signal transduction pathway in plants (for a review, see [2]). Calcium and protein phosphorylation/dephosphorylation processes may be involved in the transduction of the ethylene signal [3]. Ethylene is also among the mediators of programmed cell death in plants [4].Recently we demonstrated for the first time that besides plants, certain animal cells, namely cells from a marine sponge (Suberites domuncula), sensitively react to ethylene [5]. This gas is present, at a concentration of up to 100 pM, in seawater [6], where it can be produced from dissolved organic carbon by photochemical (especially ultraviolet %U http://www.biomedcentral.com/1471-2121/2/7