%0 Journal Article %T Graphs which have pancyclic complements %A H. Joseph Straight %J International Journal of Mathematics and Mathematical Sciences %D 1978 %I Hindawi Publishing Corporation %R 10.1155/s0161171278000216 %X Let p and q denote the number of vertices and edges of a graph G, respectively. Let ¡±(G) denote the maximum degree of G, and G ¡¥ the complement of G. A graph G of order p is said to be pancyclic if G contains a cycle of each length n, 3 ¡é ¡ë ¡èn ¡é ¡ë ¡èp. For a nonnegative integer k, a connected graph G is said to be of rank k if q=p ¡é ¡¯1+k. (For k equal to 0 and 1 these graphs are called trees and unicyclic graphs, respectively.) %K graphs %K pancyclic graphs %K and unicyclic graphs. %U http://dx.doi.org/10.1155/S0161171278000216