%0 Journal Article %T Outer compositions of hyperbolic/loxodromic linear fractional transfomations %A John Gill %J International Journal of Mathematics and Mathematical Sciences %D 1992 %I Hindawi Publishing Corporation %R 10.1155/s016117129200108x %X It is shown, using classical means, that the outer composition of hyperbolic or loxodromic linear fractional transformations {fn}, where fn ¡é ¡¯f, converges to ¡À, the attracting fixed point of f, for all complex numbers z, with one possible exception, z0. I.e.,Fn(z):=fn ¡é fn ¡é ¡¯1 ¡é ¡é ? | ¡é f1(z) ¡é ¡¯ ¡ÀWhen z0 exists, Fn(z0) ¡é ¡¯ 2, the repelling fixed point of f. Applications include the analytic theory of reverse continued fractions. %K linear fractional transformations %K continued fractions %K fixed points. %U http://dx.doi.org/10.1155/S016117129200108X