%0 Journal Article %T The zeros of az2J ¡é ? 3 (z)+bzJ ¡é ? 2 (z)+cJ (z) as functions of order %A A. McD. Mercer %J International Journal of Mathematics and Mathematical Sciences %D 1992 %I Hindawi Publishing Corporation %R 10.1155/s0161171292000395 %X If j ¡é ? 3 k denotes the kth positive zero of the Bessel function J ¡é ? 3 (x), it has been shown recently by Lorch and Szego [2] that j ¡é ? 3 1 increases with in >0 and that (with k fixed in 2,3, ¡é ? |) j ¡é ? 3 k increases in 0< ¡é ¡ë ¡è3838. Furthermore, Wong and Lang have now extended the latter result, as well, to the range >0. The present paper, by using a different kind of analysis, re-obtains these conclusions as a special case of a more general result concerning the positive zeros of the function az2J ¡é ? 3 (z)+bzJ ¡é ? 2 (z)+cJ (z). Here, the constants a, b and c are subject to certain mild restrictions. %K Bessel functions %K zeros %K eigenvalues %K boundary-value problems %K ordinary differential equations. %U http://dx.doi.org/10.1155/S0161171292000395