%0 Journal Article %T BCG strain S4-Jena: An early BCG strain is capable to reduce the proliferation of bladder cancer cells by induction of apoptosis %A Katja Schwarzer %A Martin Foerster %A Thomas Steiner %A Inge-Marie Hermann %A Eberhard Straube %J Cancer Cell International %D 2010 %I BioMed Central %R 10.1186/1475-2867-10-21 %X In contrast to commercially available BCG strains the S4-Jena strain shows genotypic differences. Spoligotyping verifies the S4-Jena strain as a BCG strain. Infection with viable S4-Jena or TICE decreased proliferation in the T24 cell line. Additionally, hallmarks of apoptosis were detectable. In contrast, Cal29 cells showed only a slightly decreased proliferation with TICE. Cal29 cells infected with S4-Jena, though, showed a significantly decreased proliferation in contrast to TICE. Concordantly with these results, infection with TICE had no effect on the morphology and hallmarks of apoptosis of Cal29 cells. However, S4-Jena strain led to clearly visible morphological changes and caspases 3/7 activation and PS flip.S4-Jena strain has a direct influence on bladder cancer cell lines as shown by inhibition of cell proliferation and induction of apoptosis. The data implicate that the T24 cells are responder for S4-Jena and TICE BCG. However, the Cal29 cells are only responder for S4-Jena and they are non-responder for TICE BCG. S4-Jena strain may represent an effective therapeutic agent for NMIBC.In non-muscle-invasive bladder cancer (NMIBC) patients with a high-risk for recurrence an immediate chemotherapy should be followed by adjuvant therapy with Mycobacterium bovis bacillus Calmette-Guerin (BCG) [1]. The mechanism by which BCG is effective in the treatment of bladder cancer remains still controversially discussed, yet. BCG therapy results finally in a local immune response characterised by cytokine expression of bladder cells [2]. In addition, influx of granulocytes and mononuclear cells into bladder wall has been observed [3]. Several studies indicate a high survival rate and persistence of BCG in the bladder wall after intravesical BCG-treatment [4,5]. Several in vitro studies demonstrated a direct effect of BCG on bladder cancer cell lines in the absence of immune mechanisms [6]. These effects included cell cycle arrest [7], inhibition of cell proliferation [8- %U http://www.cancerci.com/content/10/1/21