%0 Journal Article %T MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer %A Kah Chang %A Pieter Mestdagh %A Jo Vandesompele %A Michael J Kerin %A Nicola Miller %J BMC Cancer %D 2010 %I BioMed Central %R 10.1186/1471-2407-10-173 %X We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed.In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue.Our study demonstrates that the top six most stably expressed miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) described herein should be validated as suitable reference genes in both high-throughput and lower throughput RT-qPCR colorectal miRNA studies.Mi(cro)RNAs are short RNA molecules that bind (generally) to 3' UTR sequences of target messenger RNAs (mRNAs), thereby modulating their expression patterns. This modulated gene expression is manifest either as translational repression [1], or mRNA degradation whereby the RNA interference pathway is initiated to remove targeted sequences [2]. MiRNAs play major roles in governing diverse biological processes such as differentiation, proliferation, and apoptosis [3,4]. Individual miRNAs have been ascribed oncogenic and tumour suppressor function %U http://www.biomedcentral.com/1471-2407/10/173