%0 Journal Article %T Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring %A Birgit Wehefritz-Kaufmann %J Symmetry, Integrability and Geometry : Methods and Applications %D 2010 %I National Academy of Science of Ukraine %X We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has U_q(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model. %K asymmetric diffusion %K nested Uq(SU(3)) Bethe ansatz %K dynamical critical exponent %U http://dx.doi.org/10.3842/SIGMA.2010.039