%0 Journal Article %T G-Strands and Peakon Collisions on Diff(R) %A Darryl D. Holm %A Rossen I. Ivanov %J Symmetry, Integrability and Geometry : Methods and Applications %D 2013 %I National Academy of Science of Ukraine %X A G-strand is a map g: R¡ÁR¡úG for a Lie group G that follows from Hamilton's principle for a certain class of G-invariant Lagrangians. Some G-strands on finite-dimensional groups satisfy 1+1 space-time evolutionary equations that admit soliton solutions as completely integrable Hamiltonian systems. For example, the SO(3)-strand equations may be regarded physically as integrable dynamics for solitons on a continuous spin chain. Previous work has shown that G-strands for diffeomorphisms on the real line possess solutions with singular support (e.g. peakons). This paper studies collisions of such singular solutions of G-strands when G=Diff(R) is the group of diffeomorphisms of the real line R, for which the group product is composition of smooth invertible functions. In the case of peakon-antipeakon collisions, the solution reduces to solving either Laplace's equation or the wave equation (depending on a sign in the Lagrangian) and is written in terms of their solutions. We also consider the complexified systems of G-strand equations for G=Diff(R) corresponding to a harmonic map g: C¡úDiff(R) and find explicit expressions for its peakon-antipeakon solutions, as well. %K Hamilton's principle %K continuum spin chains %K Euler-Poincar¨¦ equations %K Sobolev norms %K singular momentum maps %K diffeomorphisms %K harmonic maps %U http://dx.doi.org/10.3842/SIGMA.2013.027