%0 Journal Article %T Sylvester versus Gundelfinger %A Andries E. Brouwer %A Mihaela Popoviciu %J Symmetry, Integrability and Geometry : Methods and Applications %D 2012 %I National Academy of Science of Ukraine %X Let $V_n$ be the ${ m SL}_2$-module of binary forms of degree $n$and let $V = V_1 oplus V_3 oplus V_4$. We show that the minimum number of generators of the algebra $R = mathbb{C}[V]^{{ m SL}_2}$ of polynomial functions on $V$ invariant under the action of ${ m SL}_2$ equals 63. This settles a 143-year old question. %K invariants %K covariants %K binary forms %U http://dx.doi.org/10.3842/SIGMA.2012.075