%0 Journal Article %T Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The CINDERELLA trial %A Stephanie E Combs %A Iris Burkholder %A Lutz Edler %A Stefan Rieken %A Daniel Habermehl %A Oliver J£¿kel %A Thomas Haberer %A Renate Haselmann %A Andreas Unterberg %A Wolfgang Wick %A J¨¹rgen Debus %J BMC Cancer %D 2010 %I BioMed Central %R 10.1186/1471-2407-10-533 %X Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons.First Japanese Data on the evaluation of carbon ion radiation therapy for the treatment of primary high-grade gliomas showed promising results in a small and heterogeneous patient collective.In the current Phase I/II-CINDERELLA-trial re-irradiation using carbon ions will be compared to FSRT applied to the area of contrast enhancement representing high-grade tumor areas in patients with recurrent gliomas. Within the Phase I Part of the trial, the Recommended Dose (RD) of carbon ion radiotherapy will be determined in a dose escalation scheme. In the subsequent randomized Phase II part, the RD will be evaluated in the experimental arm, compared to the standard arm, FSRT with a total dose of 36 Gy in single doses of 2 Gy.Primary endpoint of the Phase I part is toxicity. Primary endpoint of the randomized part II is survival after re-irradiation at 12 months, secondary endpoint is progression-free survival.The Cinderella trial is the first study to evaluate carbon ion radiotherapy for recurrent gliomas, and to compare this treatment to photon FSRT in a randomized setting using an ion beam delivered by intensity modulated rasterscanning.NCT01166308Recurrent gliomas remain a major challenge in radiation oncology. In the past, second courses of radiotherapy have only been applied reluctantly, in fear of treatment-related side effects. However, modern radiation techniques have enabled the radiation oncologist to deliver high local doses as an effective salvage treatment with low rates of sid %U http://www.biomedcentral.com/1471-2407/10/533