%0 Journal Article %T Tumor-directed gene therapy in mice using a composite nonviral gene delivery system consisting of the piggyBac transposon and polyethylenimine %A Yu Kang %A Xiaoyan Zhang %A Wei Jiang %A Chaoqun Wu %A Chunmei Chen %A Yufang Zheng %A Jianren Gu %A Congjian Xu %J BMC Cancer %D 2009 %I BioMed Central %R 10.1186/1471-2407-9-126 %X A recombinant plasmid PB [Act-RFP, HSV-tk] encoding both the herpes simplex thymidine kinase (HSV-tk) and the monomeric red fluorescent protein (mRFP1) under PB transposon elements was constructed. This plasmid and the PBase plasmid were injected into ovarian cancer tumor xenografts in mice by in vivo PEI system. The antitumor effects of HSV-tk/ganciclovir (GCV) system were observed after intraperitoneal injection of GCV. Histological analysis and TUNEL assay were performed on the cryostat sections of the tumor tissue.Plasmid construction was confirmed by PCR analysis combined with restrictive enzyme digestion. mRFP1 expression could be visualized three weeks after the last transfection of pPB/TK under fluorescence microscopy. After GCV admission, the tumor volume of PB/TK group was significantly reduced and the tumor inhibitory rate was 81.96% contrasted against the 43.07% in the TK group. Histological analysis showed that there were extensive necrosis and lymphocytes infiltration in the tumor tissue of the PB/TK group but limited in the tissue of control group. TUNEL assays suggested that the transfected cells were undergoing apoptosis after GCV admission in vivo.Our results show that the nonviral gene delivery system coupling PB transposon with PEI can be used as an efficient tool for gene therapy in ovarian cancer.Gene therapy is a promising strategy for the treatment of unresectable cancer. Non-viral gene transfer systems used in cancer gene therapy are attractive because they are relatively stable, safer, and easier to produce than viral vectors [1]. Conventional nonviral gene transfer systems include the direct tissue injection of DNA or transfection across the cell membrane using liposomes, peptide delivery systems, or polymer vectors[2]. Among them, the polycation polyethylenimine (PEI) have been extensively used for in vivo gene delivery [3]. PEI combines strong DNA compaction capacity with an intrinsic endosomolytic activity[4]. Recently studies showed th %U http://www.biomedcentral.com/1471-2407/9/126