%0 Journal Article %T On Huppert's conjecture for F_4(2) %A Hung P Tong-Viet %A Thomas P Wakefield %J International Journal of Group Theory %D 2012 %I University of Isfahan %X Let $G$ be a finite group and let $text{cd}(G)$ be the set of all complex irreducible character degrees of $G$. B. Huppert conjectured that if $H$ is a finite nonabelian simple group such that $text{cd}(G) =text{cd}(H)$, then $Gcong H times A$, where $A$ is an abelian group. In this paper, we verify the conjecture for $rm{F_4(2)}.$ %K Character degrees %K simple groups %K Huppert's Conjecture %U http://www.theoryofgroups.ir/?_action=showPDF&article=763&_ob=84125d4a5e2e7ac9630a1081299e34f0&fileName=full_text.pdf