%0 Journal Article %T Comparative analysis of protein coding sequences from human, mouse and the domesticated pig %A Frank J£¿rgensen %A Asger Hobolth %A Henrik Hornsh£¿j %A Christian Bendixen %A Merete Fredholm %A Mikkel Schierup %J BMC Biology %D 2005 %I BioMed Central %R 10.1186/1741-7007-3-2 %X We provide evidence that the evolutionary splits among primates, rodents and artiodactyls happened shortly after each other, with most gene trees favouring a topology with rodents as outgroup to primates and artiodactyls. Using an unrooted topology of the three mammalian species we show that since their diversification, the pig and mouse lineages have on average experienced 1.44 and 2.86 times as many synonymous substitutions as humans, respectively, whereas the rates of non-synonymous substitutions are more similar. The analysis shows the highest average dN/dS ratio in the human lineage, followed by the pig and then the mouse lineages. Using codon based models we detect signals of positive Darwinian selection in approximately 5.3%, 4.9% and 6.0% of the genes on the human, pig and mouse lineages respectively. Approximately 16.8% of all the genes studied here are not currently annotated as functional genes in humans. Our analyses indicate that a large fraction of these genes may have lost their function quite recently or may still be functional genes in some or all of the three mammalian species.We present a comparative analysis of protein coding genes from three major mammalian lineages. Our study demonstrates the usefulness of codon-based likelihood models in detecting selection and it illustrates the value of sequencing organisms at different phylogenetic distances for comparative studies.Large scale sequencing projects of many different species allow us to investigate phylogenetic issues in much more detail and to identify whether certain genes have had an extraordinary evolution in one or more species and thus gain insight into the actions of natural selection. Despite the sequencing of an increasing number of mammalian genomes and the implementation of more sophisticated evolutionary models using maximum likelihood and Bayesian methodology, the branching order within the mammalian phylum is still not completely resolved. The main reason for this uncertainty is %U http://www.biomedcentral.com/1741-7007/3/2