%0 Journal Article %T In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene %A Stacey D Finley %A Linda J Broadbelt %A Vassily Hatzimanikatis %J BMC Systems Biology %D 2010 %I BioMed Central %R 10.1186/1752-0509-4-7 %X We have utilized a computational framework called BNICE to generate novel biodegradation routes for 1,2,4-trichlorobenzene (1,2,4-TCB) and incorporated the pathways into a metabolic model for Pseudomonas putida. We studied the cellular feasibility of the pathways by applying metabolic flux analysis (MFA) and thermodynamic constraints. We found that the novel pathways generated by BNICE enabled the cell to produce more biomass than the known pathway. Evaluation of the flux distribution profiles revealed that several properties influenced biomass production: 1) reducing power required, 2) reactions required to generate biomass precursors, 3) oxygen utilization, and 4) thermodynamic topology of the pathway. Based on pathway analysis, MFA, and thermodynamic properties, we identified several promising pathways that can be engineered into a host organism to accomplish bioremediation.This work was aimed at understanding how novel biodegradation pathways influence the existing metabolism of a host organism. We have identified attractive targets for metabolic engineers interested in constructing a microorganism that can be used for bioremediation. Through this work, computational tools are shown to be useful in the design and evaluation of novel xenobiotic biodegradation pathways, identifying cellularly feasible degradation routes.The prevalence and widespread use of man-made chemicals ("xenobiotics") has led to a focused effort to establish new technologies to reduce or eliminate these contaminants from the environment. Commonly used pollution treatment methods such as incineration, landfilling, and air stripping also have an adverse effect on the environment [1,2]. Additionally, these methods are costly and sometimes inefficient. Therefore, it is important to develop alternative methods of biodegradation that are effective, minimally hazardous, and economical. One promising treatment method is to exploit the ability of microorganisms to use these foreign substances for mai %U http://www.biomedcentral.com/1752-0509/4/7