%0 Journal Article %T ProteinShader: illustrative rendering of macromolecules %A Joseph R Weber %J BMC Structural Biology %D 2009 %I BioMed Central %R 10.1186/1472-6807-9-19 %X The ProteinShader program, a new tool for macromolecular visualization, uses information from Protein Data Bank files to produce illustrative renderings of proteins that approximate what an artist might create by hand using pen and ink. A combination of Hermite and spherical linear interpolation is used to draw smooth, gradually rotating three-dimensional tubes and ribbons with a repeating pattern of texture coordinates, which allows the application of texture mapping, real-time halftoning, and smooth edge lines. This free platform-independent open-source program is written primarily in Java, but also makes extensive use of the OpenGL Shading Language to modify the graphics pipeline.By programming to the graphics processor unit, ProteinShader is able to produce high quality images and illustrative rendering effects in real-time. The main feature that distinguishes ProteinShader from other free molecular visualization tools is its use of texture mapping techniques that allow two-dimensional images to be mapped onto the curved three-dimensional surfaces of ribbons and tubes with minimum distortion of the images.The study of protein structure is an intensely active area of research. The number of proteins for which a three-dimensional structure has been solved has increased exponentially in recent years, and there are currently over 56,000 entries in the Protein Data Bank (PDB [1,2]), a publicly accessible single worldwide archive of structural data for biological macromolecules. The three-dimensional structure of a protein determines what other molecules it is capable of binding and interacting with, so a deep understanding of protein structure is critical for predicting protein function and for designing drugs that interact with proteins.The basic building blocks of protein, amino acids, are small enough that they can be easily understood using simple balls and sticks models that show every atom and bond. Proteins, however, are typically composed of hundreds or even %U http://www.biomedcentral.com/1472-6807/9/19