%0 Journal Article %T Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium %A Naima G Cortes-Perez %A Pascale Kharrat %A Philippe Langella %A Luis G Berm¨˛dez-Humar¨˘n %J BMC Research Notes %D 2009 %I BioMed Central %R 10.1186/1756-0500-2-167 %X HPV-16 L1 gene was cloned into two vectors, pCYT and pSEC, designed for controlled intra- or extracellular heterologous expression in L. lactis, respectively. The capacity of L. lactis harboring either pCYT:L1 or pSEC:L1 plasmid to accumulate L1 in the cytoplasm and supernatant samples was confirmed by Western blot assays. Electron microscopy analysis suggests that, L1 protein produced by recombinant lactococci can self-assemble into structures morphologically similar to VLPs intracellularly. The presence of conformational epitopes on the L. lactis-derived VLPs was confirmed by ELISA using an anti-HPV16 L1 capsid antigen antibody. Our results support the feasibility of using recombinant food-grade LAB, such as L. lactis, for the production of L1-based VLPs and open the possibility for the development of a new safe mucosal vector for HPV-16 prophylactic vaccination.Human papillomavirus type 16 (HPV-16) infection is closely associated with the development of cervical cancer (CxCa) [1], the second cause of cancer-related deaths in women worldwide (~250 000 annually) [2]. Therefore, a prophylactic vaccine against HPV-16 is thus a priority to prevent this type of cancer. HPV-16 L1 major capsid protein is able to self-assemble into virus-like particles (VLPs) which are structures that are morphologically similar and immunogenic as to native HPV [17]. Prophylactic vaccines based on highly purified VLPs were successfully used in trials in women with a significant reduction observed in the incidence of both HPV-16 infection and HPV-16 related CxCa [3], and now two vaccines, Gardasil and Cervarix, have been approved for use against this cancer. In developing countries, where about 80% of CxCa occurs [2], immunization programs would be more efficient and economical if vaccines are temperature stable, required less doses to immunize and could be administered without the need for specially trained personnel and instruments (eg. needles).Alternatively, mucosal vaccines (e.g. admi %U http://www.biomedcentral.com/1756-0500/2/167