%0 Journal Article %T Cell_motility: a cross-platform, open source application for the study of cell motion paths %A Lennart Martens %A Geert Monsieur %A Christophe Ampe %A Kris Gevaert %A Jo£żl Vandekerckhove %J BMC Bioinformatics %D 2006 %I BioMed Central %R 10.1186/1471-2105-7-289 %X We here present the cell_motility software, an open source Java application under the GNU-GPL license that provides a clear and concise analysis workbench for large amounts of cell motion data. Apart from performing the necessary calculations, the software also visualizes the original motion paths as well as the results of the calculations to help the user interpret the data. The application features an intuitive graphical user interface as well as full user and developer documentation and both source and binary files can be freely downloaded from the project website at http://genesis.UGent.be/cell_motility webcite .In providing a free, open source software solution for the automated processing of cell motion data, we aim to achieve two important goals: labs can greatly simplify their data analysis pipeline as switching between different computational software packages becomes obsolete (thus reducing the chances for human error during data manipulation and transfer) and secondly, to provide scientists in the field with a freely available common platform to perform their analyses, enabling more efficient data quality control through peer reviewing.Triggered and directed cell motion is a highly interesting research topic since it is involved in both essential physiological and important pathological processes. Indeed, organism development, tissue repair, inflammation, angiogenesis and tumor metastasis all rely on mobile cells. Correspondingly, the scientific literature abounds with overviews of the importance of cell motility [1-5]. Typically, studies on cell motion can be performed on groups of cells (population assays) as well as on individual cells. As the former depends on the net sum of the motions of the latter, the detailed study of individual cell trajectories can usually reveal greater insights into cell motion behaviour. Additionally, mathematical models have been developed to relate a summation of individual cell paths to population movements [6].A single c %U http://www.biomedcentral.com/1471-2105/7/289