%0 Journal Article %T Synthesis and Characterization of Nanosized Pigments %A M. F. R. Fouda %A M. B. El-Kholy %A S. A. Moustafa %A A. I. Hussien %A M. A. Wahba %A M. F. El-Shahat %J International Journal of Inorganic Chemistry %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/989281 %X The work in this paper was devoted to investigating some nanosized iron oxide pigments prepared by microemulsion technique. The role of concentration of iron salt and surfactant (cetyltrimethylammonium bromide) on the produced iron oxide was studied. The techniques employed to characterize the samples were thermogravimetric analysis, X-ray diffractometry, transmission electron microscope, infrared spectroscopy, and diffuse reflectance spectroscopy. The results revealed that the particle size of the prepared sample using 0.2£¿M iron sulfate and 3.2£¿wt% of surfactant was in the range 7¨C9£¿nm. Increasing the concentration of either iron salt or the surfactant increased the particle size of the obtained ferric oxide. The diffuse reflectance measurements showed that the charge transfer/electron pair transition absorption peak, which is closely related to the reddish color of the oxide, was shifted to a longer wavelength (blue shift) by decreasing the dimension of the particles. The samples were tested as pigments. They showed different tints of red color and were found to be promising for applications as pigments in the field of paint manufacturing. 1. Introduction Nanostructured iron oxides are of a great interest when compared with their bulk counterpart due to their large surface area, high rate of reactivity, and due to the possibility of enhancing environmental friendly reactions. They have superior characters in nontoxicity, chemical stability, durability, and low costs [1]. Due to these properties, they find wide applications in the fields of nanoscience and nanotechnology as pigments, enhancing storage capacity in electronic recording devices, catalysts in some industries, and contrasting agents in magnetic resonance imaging [2¨C4]. Iron oxide nanoparticles with various structures, sizes, and morphologies have been attained. It is now well known that the morphology and size of the particles have a great impact on their chemical and physical properties. In order to control particle size and obtain monodispersed nanoparticles with a narrow size distribution, various techniques have been employed [5]. Among these techniques, water-in-oil (W/O) microemulsions or reverse micelles are particularly good reaction media for fabricating metal oxide nanoparticles. The outstanding dispersion, small particle size distribution, and shape control imparted by the microemulsion synthesis technique make it a very attractive method for synthesis of nanooxides. In this technique, nanosized water droplets are dispersed in a continuous oil medium and stabilized by surfactant %U http://www.hindawi.com/journals/ijic/2012/989281/