%0 Journal Article %T Oscillation theorems concerning non-linear differential equations of the second order %A E.M. Elabbasy %A Sh.R. Elzeiny %J Opuscula Mathematica %D 2011 %I AGH University of Science and Technology %X This paper concerns the oscillation of solutions of the differential eq. $$ \left[ r\left( t\right) \psi \left(x\left( t\right) \right) f\text{ }( \overset{\cdot }{x}(t))\right]^{\cdot }+q\left( t\right) \varphi (g\left( x\left( t\right) \right), r\left( t\right) \psi \left( x\left( t\right) \right) f(\overset{\cdot }{x}(t)))=0,$$ where $u\varphi \left( u,v\right) >0$ for all $u\neq 0,$ $xg\left( x\right) >0,$ $xf\left( x\right)>0$ for all $x\neq 0,$ $\psi \left( x\right) >0$ for all $x\in \mathbb{R},$ $r\left( t\right) >0$ for $t\geq t_{0}>0$ and $q$ is of arbitrary sign. Our results complement the results in [A.G. Kartsatos, On oscillation of nonlinear equations of second order, J. Math. Anal. Appl. 24 (1968), 665¨C668], and improve a number of existing oscillation criteria. Our main results are illustrated with examples. %K second order %K nonlinear %K differential equations %K oscillation %U http://www.opuscula.agh.edu.pl/vol31/3/art/opuscula_math_3126.pdf