%0 Journal Article %T A new multitest correction (SGoF) that increases its statistical power when increasing the number of tests %A Antonio Carvajal-Rodr¨ªguez %A Jacobo de U£¿a-Alvarez %A Emilio Rol¨¢n-Alvarez %J BMC Bioinformatics %D 2009 %I BioMed Central %R 10.1186/1471-2105-10-209 %X It is shown that SGoF behaves especially well with small sample sizes when 1) the alternative hypothesis is weakly to moderately deviated from the null model, 2) there are widespread effects through the family of tests, and 3) the number of tests is large.Therefore, SGoF should become an important tool for multitest adjustment when working with high-dimensional biological data.Statistical tests are a fundamental scientific tool for contrasting alternative hypotheses by rejecting or not the null one given an a priori fixed significance level. Such a methodology may have two types of associated errors: type I error, i.e. the rejection of the null hypothesis when it is true (a false discovery or false positive) and type II error i.e. the acceptance of the null hypothesis when the alternative one is true (a false negative [1]). Most statistical tests traditionally aim to control type I error. However, such a strategy was originally developed to test a single null hypothesis, and an undesirable high rate of false discoveries may be obtained when working with families of comparisons under simultaneous consideration. Different strategies have been considered to deal with this problem. The control of the familywise error rate (FWER; [2]) is performed by Bonferroni likewise techniques. The aim of the FWER is to control the probability of making one or more type I errors in families of simultaneous comparisons. Alternatively, false discovery rate (FDR) based methods aim to control the proportion of false discoveries among the total ones (i.e. the proportion of the rejected null hypotheses which are erroneously rejected [3-5]). Multitest adjustment strategies have gained attention since the apparition of the so-called high-dimensional biological data as a consequence of the 'omic' technologies. Therefore, in some research areas the number of tests accomplished has increased dramatically due to the recent technological improvements [6-9]. For example, in genomic and microarray %U http://www.biomedcentral.com/1471-2105/10/209