%0 Journal Article %T Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4 %A Ingrid Kassner %A Marc Barandun %A Monika Fey %A Florian Rosenthal %A Michael O Hottiger %J Epigenetics & Chromatin %D 2013 %I BioMed Central %R 10.1186/1756-8935-6-1 %X In experiments with isolated histones, it was found that ADP-ribosylation of H3 by ARTD1 prevents H3 methylation by SET7/9. However, poly(ADP-ribosyl)ation (PARylation) of histone H3 surprisingly allowed subsequent methylation of H1 by SET7/9. Histone H1 was thus identified as a new target for SET7/9. The SET7/9 methylation sites in H1.4 were pinpointed to the last lysine residues of the six KAK motifs in the C-terminal domain (K121, K129, K159, K171, K177 and K192). Interestingly, H1 and the known SET7/9 target protein H3 competed with each other for SET7/9-dependent methylation.The results presented here identify H1.4 as a novel SET7/9 target protein, and document an intricate crosstalk between H3 and H1 methylation and PARylation, thus implying substrate competition as a regulatory mechanism. Thereby, these results underline the role of ADP-ribosylation as an element of the histone code.Histones are nuclear proteins that package and order the DNA into nucleosomes [1]. Five major families of histones exist: H1 (H5), H2A, H2B, H3, and H4. Two copies of the core histones H2A, H2B, H3 and H4 form the octameric nucleosome core particles [2]. Unlike the other histones, only one copy of the linker histone H1 is present and stabilizes the DNA, which is wrapped around the core nucleosome [3]. Linker histones bind to both the nucleosome and the linker DNA region (approximately 20 to 80 nucleotides in length) between nucleosomes. The interaction of H1 with the nucleosome and additional DNA stretches at the entry/exit of the nucleosome forms the chromatosome and leads to higher order chromatin structure [4]. Many experiments addressing H1 function have been performed with purified, processed chromatin under low-salt conditions, but the in vivo role of H1 is less clear. Cellular studies have shown that overexpression of H1 can cause aberrant nuclear morphology and chromatin structure and, depending on the gene, H1 can serve as either a positive or a negative regulator of tran %K PARP-1 %K SET7/9 %K Lysine methylation %K Poly-ADP-ribosylation %K Post-translational modification %U http://www.epigeneticsandchromatin.com/content/6/1/1