%0 Journal Article %T Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue %A Kathryn Woodfine %A Joanna E Huddleston %A Adele Murrell %J Epigenetics & Chromatin %D 2011 %I BioMed Central %R 10.1186/1756-8935-4-1 %X Remarkable stability of the DNA methylation imprint was observed in all germ-line DMRs and paternally methylated somatic DMRs (which maintained average methylation levels of between 35% - 65% in all somatic tissues, independent of gene expression). Maternally methylated somatic DMRs were found to have more variation with tissue specific methylation patterns. Most DMRs, however, showed some intra-individual variability for DNA methylation levels in peripheral blood, suggesting that more than one DMR needs to be examined in order to get an overall impression of the epigenetic stability in a tissue. The plasticity of DNA methylation at imprinted genes was examined in a panel of normal and cancer cell lines. All cell lines showed changes in DNA methylation, especially at the paternal germ-line and the somatic DMRs.Our validated pyrosequencing methylation assays can be widely used as a tool to investigate DNA methylation levels of imprinted genes in clinical samples. This first comprehensive analysis of normal methylation levels in adult somatic tissues at human imprinted regions confirm that, despite intra-individual variability and tissue specific expression, imprinted genes faithfully maintain their DNA methylation in healthy adult tissue. DNA methylation levels of a selection of imprinted genes are, therefore, a valuable indicator for epigenetic stability.DNA methylation levels at gene promoters and Cytosine-phosphate guanine (CpG) islands associated with gene regulatory regions undergo dynamic changes during differentiation and can vary between normal tissues [1]. In cancer cells epigenetic programming results in global methylation changes [2] and it is difficult to ascertain which methylation changes are abnormal without knowing what normal baseline methylation profiles are for the tissue from which the cancer originates [3]. Since aberrant DNA methylation is thought to be an early indicator of cancer, it will be useful to have a series of reporter loci to indicate %U http://www.epigeneticsandchromatin.com/content/4/1/1