%0 Journal Article %T Simultaneous storage of medical images in the spatial and frequency domain: A comparative study %A Jagadish Nayak %A P Subbanna Bhat %A Rajendra Acharya U %A Niranjan UC %J BioMedical Engineering OnLine %D 2004 %I BioMed Central %R 10.1186/1475-925x-3-17 %X The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) coefficients is studied. Differential pulse code modulation (DPCM) is employed for data compression as well as encryption and results are tabulated for a specific example.It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain.The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient.Digital watermarking is a type of data hiding or steganography. It entails inserting some data into a digital image, a sound file or a digital video [4,12]. This data can be used to verify ownership. A user can extract the data and compare it with the original embedded data to determine ownership of the image. Usually the mere presence of something resembling is the original embedded data is enough to justify for copyright violation purposes. Digital watermarking have several other uses, such as fingerprinting, authentication, integrity verification purposes, content labeling, usage control and content protection [19,8]. The efficient utilization of bandwidth of communication channel and storage space can be achieved, when the reduction in data size is done. Isolated transmission of image and data requires more bandwidth in transmission and more memory space during storage. The large amount of patient information such as bio signals, %U http://www.biomedical-engineering-online.com/content/3/1/17