%0 Journal Article %T The role of causal reasoning in understanding Simpson's paradox, Lord's paradox, and the suppression effect: covariate selection in the analysis of observational studies %A Onyebuchi A Arah %J Emerging Themes in Epidemiology %D 2008 %I BioMed Central %R 10.1186/1742-7622-5-5 %X Simpson's paradox, Lord's paradox, and the suppression effect are examples of the perils of the statistical interpretation of a real but complex world. By rearing their heads intermittently in the literature they remind us about the inadequacy of statistical criteria for causal analysis. Those who believe in letting the data speak for themselves are in for a disappointment.Tu et al present an analysis of the equivalence of three paradoxes, concluding that all three simply reiterate the unsurprising change in the association of any two variables when a third variable is statistically controlled for [1]. I call this unsurprising because reversal or change in magnitude is common in conditional analysis. To avoid either, we must avoid conditional analysis altogether. What is it about Simpson's and Lord's paradoxes or the suppression effect, beyond their pointing out the obvious, that attracts the intermittent and sometimes alarmist interests seen in the literature? Why are they paradoxes? A paradox is a seemingly absurd or self-contradictory statement or proposition that may in fact be true [2]. What is so self-contradictory about the Simpson's, Lord's, and suppression phenomena that may turn out to be true? After reading the paper by Tu et al one still gets the uneasy feeling that the paradoxes are anything but surprising, that the statistical phenomenon they purport to represent are in fact causal in nature, requiring a causal language not a statistical one, and that the problem can be resolved only with causal reasoning. So, why bother with the statistics of these paradoxes, much less their equivalence, in the first instance if both the correct language and resolution lie elsewhere? Although we are given a glimpse of the appropriate tools (such as the implied causal calculus of directed acyclic graphs [3-6]), we must look beyond the authors' paper for satisfactory answers.At the heart of the phenomenon of change in magnitude, with or without reversal of effect estima %U http://www.ete-online.com/content/5/1/5