%0 Journal Article %T Gene-enhanced tissue engineering for dental hard tissue regeneration: (1) overview and practical considerations %A Paul C Edwards %A James M Mason %J Head & Face Medicine %D 2006 %I BioMed Central %R 10.1186/1746-160x-2-12 %X This manuscript will review the principals of gene-enhanced tissue engineering and the techniques of introducing DNA into cells. Part 2 will review recent advances in gene-based therapies for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping and periodontal regeneration.Current approaches to tissue regeneration include: (i) the use of passive three-dimensional scaffolds to provide a local environment that is conducive to new tissue formation, (ii) inductive strategies in which additional growth factors are incorporated into a scaffold/matrix to modify cell behavior, and (iii) strategies to form a vital construct of cells, either fully differentiated autologous cells of the desired type, or stem cells that have been isolated and expanded in vitro to restore tissue function.Gene-enhanced tissue engineering (GETE) combines techniques of tissue engineering with gene therapy. Specifically, gene-based therapies involve delivering a specific gene to the target tissue with the goal of changing the phenotype or protein expression profile of the recipient cell [1]. This can stimulate the gene-enhanced cell and/or neighboring uncommitted cells to differentiate into the desired cell and tissue types. One of the principal advantages of this approach is that it provides for a sustained delivery of physiologic levels of the growth factor of interest. This is in contrast to protein delivery systems, which are often hampered by the short half life of the delivered protein.The central premise underpinning this approach is the existence of a population of progenitor cells that are capable of regenerating different tissues with guidance from local cues in the wound environment. Mammalian cells are, of necessity, fully capable of forming the varied tissues and organs during initial development and growth of the organism. This regenerative ability is decreased with aging, in part the result of a decrease in production of the specific protein %U http://www.head-face-med.com/content/2/1/12