%0 Journal Article %T A novel technique for fetal heart rate estimation from Doppler ultrasound signal %A Janusz Jezewski %A Dawid Roj %A Janusz Wrobel %A Krzysztof Horoba %J BioMedical Engineering OnLine %D 2011 %I BioMed Central %R 10.1186/1475-925x-10-92 %X We have proposed a new technique which provides the true beat-to-beat values of the FHR signal through multiple measurement of a given cardiac cycle in the ultrasound signal. The method consists in three steps: the dynamic adjustment of autocorrelation window, the adaptive autocorrelation peak detection and determination of beat-to-beat intervals. The estimated fetal heart rate values and calculated indices describing variability of FHR, were compared to the reference data obtained from the direct fetal electrocardiogram, as well as to another method for FHR estimation.The results revealed that our method increases the accuracy in comparison to currently used fetal monitoring instrumentation, and thus enables to calculate reliable parameters describing the variability of FHR. Relating these results to the other method for FHR estimation we showed that in our approach a much lower number of measured cardiac cycles was rejected as being invalid.The proposed method for fetal heart rate determination on a beat-to-beat basis offers a high accuracy of the heart interval measurement enabling reliable quantitative assessment of the FHR variability, at the same time reducing the number of invalid cardiac cycle measurements.The main task of fetal monitoring is to ensure that all vital organs are properly supplied with oxygenated blood. Direct measurement of oxygen saturation during pregnancy is not possible, but the risk symptoms can be identified through the fetal heart rhythm analysis. The most accurate measurement of the periodicity in fetal heart activity is limited to the labour, when the acquisition of electrical signals using direct fetal electrocardiography (FECG) is possible [1]. The duration of each cardiac cycle (Ti) is estimated on the basis of measurement of time interval between successive R-waves in electrocardiogram. As a result the sequence of consecutive interval values is obtained in a form of time event series. Instantaneous fetal heart rate (FHRi) values %U http://www.biomedical-engineering-online.com/content/10/1/92