%0 Journal Article %T Alternative communication systems for people with severe motor disabilities: a survey %A Carlos G Pinheiro %A Eduardo LM Naves %A Pierre Pino %A Etienne Losson %A Adriano O Andrade %A Guy Bourhis %J BioMedical Engineering OnLine %D 2011 %I BioMed Central %R 10.1186/1475-925x-10-31 %X Much research work has been devoted in the past twenty years to developing assistive technology (AT) devices aiming at offering to people suffering a motor disability of various origins (e.g. locked-in-syndrome, amyotrophic lateral sclerosis, quadriplegia, muscular dystrophy, cerebral palsy, etc.) associated to disorders of verbal communication, the possibility of communicating with the persons in their entourage and having some control on their environment. These AT devices are operated by human-machine interface sensors receiving information provided by the person with disabilities to pilot a graphical user interface [1].When working in the area of augmentative and alternative communication (AAC), one of the recurring problems is selecting the sensor that will be best suited to the user's motor capacities, whatever the type of AT devices (communication aid, assistance when using the computer, etc.) used. As a consequence, one of the first tasks to be done is identifying the proper sensor from among the set of devices available on the market or developed in research labs.One of the major difficulties encountered in the quest for a well-adapted AT devices is that the selection process is strongly influenced by the user's specific needs, which in turn has an impact on the type of sensor to be used. Thus, this process cannot be carried out without taking full account of the human-machine system to which it is going to be applied. It is therefore necessary to study the performances of the user-sensor-system trio.The purpose of this paper is to report about our study regarding the several technologies employed in the restricted area of alternative communication systems based on bioelectricity. The first part covers the main types of bioelectrical signals used as control sources in modern AAC systems, notably the electromyogram (EMG), the electrooculogram (EOG) and the electroencephalogram (EEG). The second part offers a review of the various methods described in the lit %U http://www.biomedical-engineering-online.com/content/10/1/31