%0 Journal Article %T Review and classification of variability analysis techniques with clinical applications %A Andrea Bravi %A Andr¨¦ Longtin %A Andrew JE Seely %J BioMedical Engineering OnLine %D 2011 %I BioMed Central %R 10.1186/1475-925x-10-90 %X Variability analysis can be defined as the comprehensive assessment of the degree and character of patterns of variation over time intervals. This analysis found applications in many different research fields, from weather forecasting [1], to network analysis [2], process monitoring [3] and medicine, the subject of this paper. Considering the systemic host response to trauma, shock, or sepsis as a complex system, Seely et al. broadly hypothesized that the analysis of multiorgan variability (patterns of variation over time) and connectivity (patterns of interconnection over space) of physiological signals offer a means to track the system state of the host response, offering the potential for early detection of deterioration and improved real-time prognostication [3,4]. Rooted in nonlinear dynamics and physics, the approach of variability analysis has been successfully applied also for the prediction of mortality after acute myocardial infarction [5,6], detection of sleep apnea [7,8], assessment of the autonomic nervous system activity [9,10] and evaluation of the circadian rhythms regulating the body [11,12]. In particular, there is an increasing interest in the application of variability monitoring to improve clinical outcomes [13].There has been extensive research to develop multiple measures of variability and trying to characterize how variability changes with respect to specific stimuli; however, our objective in this paper is to take a step back and assess the array of variability techniques available today, analyze their properties and clinical applications, and re-evaluate their classification.The most specific classification sees several domains of variability such as the time domain, the frequency domain, the entropy domain and the scale-invariant domain [13]. However, in many recent papers the classification is often reduced to only time domain, frequency domain and a more general nonlinear domain [9,14-17]. Therefore, despite the several years passed, th %U http://www.biomedical-engineering-online.com/content/10/1/90