%0 Journal Article %T The rise of a digital immune system %A Michael C Schatz %A Adam M Phillippy %J GigaScience %D 2012 %I BioMed Central %R 10.1186/2047-217x-1-4 %X If the last two decades marked the beginning of the genomics era, starting with the sequencing and publication of the first free-living organism in 1995 and then the human genome in 2001, the current decade marks the beginning of the ˇ°mega-genomicsˇ± era, where large numbers of genomes are analyzed with diverse, sequencing-based assays to infer molecular diversity and dynamics of life. Examples include projects to determine the molecular basis of complex human diseases such as cancer [1], to study the incredible diversity and function of the human microbiome [2], to rapidly identify the origins of pathogen outbreaks [3], and to generally develop a deeper understanding of the living world through the increasing use of large-scale sequencing.These breakthroughs are driven by a shift from single-reference genomics to more quantitative, population-wide analyses. Biology has moved beyond developing a merely qualitative understanding of cellular and evolutionary processes, and now strives for base-pair resolution and predictive models of biological systems and disease. This has been enabled through the combination of dramatically improved biotechnology, computer technology, algorithms, and statistical models. Through sophisticated protocols and assays, sequencing is no longer limited to just reading DNA, but has been creatively adapted to measure transcript abundance, protein-DNA binding patterns, and the three-dimensional configuration of DNA or RNA, among others (see [4] for a overview of available applications). Sequencing throughput and costs have improved by more than a million-fold, and these advances have risen alongside similarly radical advances in computational technology and algorithm sophistication [5].Amazingly, there seems to be no end to the exponential capability growth we have witnessed, and vendor roadmaps continue to project breakneck innovation well into the next decade. Worldwide sequencing capacities currently exceed 15 petabases per year, and compute %U http://www.gigasciencejournal.com/content/1/1/4